Modelling Tactical Decision-Making with TDF (Tactics Development Framework)

Rick Evertsz

rick.evertsz@rmit.edu.au

Overview

- Applications of tactics modelling
- Current approaches to tactics modelling
- The TDF Methodology
- TDF Example
- Evaluation of TDF
- Future developments

Capability Analysis

e.g., sonar performance, hull sonar signature...

Live Fire Training

e.g., robots reacting and moving realistically, ...

UAV Tactical Decision-Making

e.g., handling incoming missile, detecting and dealing with icing...

Training, Mission Rehearsal

e.g., non-player characters using realistic tactics...

Current Approaches to Tactics Modelling

- * Scripting
 - * e.g. VBS Application Scripting Interface (ASI)
 - * tied to virtual environment
 - must explicitly encode low-level details of decision-making
 - results in inflexible and fairly rudimentary behaviour
- * Sophisticated AI models, e.g. TacAir-Soar
 - * difficult to write, debug and maintain
- * All models represented at the implementation level

What is Needed?

- * Support for the whole model development life cycle
 - * requirements & knowledge elicitation
 - * model specification and design
 - verification & validation
 - * code generation
- * Easier to design, build, understand, modify, validate
- * SME can critique models
- * Traceability from requirements through implementation
- Libraries of reusable models
- * Independent of virtual environment

The TDF Methodology

- Stakeholder Objective
 - * Purchase sonar X or Y?
- Modelling Objectives
 - * Which sonar, X or Y, provides earliest detection in typical scenarios?
 - * Does the difference affect tactical outcome in typical scenarios?

- Interviews with SME
- Vignettes
 - * Support STG, detect/destroy RED submarine in strait
- Concept Map (SO/MO root)
- RPD (Recognition-Primed Decision-Making)
 - * 80-95% correspondence to expert commanders
 - * uncertainty, time pressure
 - * cues, expectancies, goals, actions

- * Identify system-level artefacts
 - * missions
 - * storylines
 - * goals
 - percepts (cues) and actions
 - * actors (external entities)
 - * roles

Mission

- * Objective: destroy RED submarine
- Secondary Objectives: identify other maritime vessels
- * Mission Statement: protect STG, expect RED in strait, intercept and destroy RED submarine
- * Operational Constraints: stealth, do not engage others
- * Risks: number of RED submarines is unknown
- * Opportunities: RED moving fast, so more detectable
- * Storylines: Navigate to AO, Search for Target, Classify Contact, Attack Target, Incoming Torpedo...
- * Data: mission route, map, undersea contour map...

- "Handle Incoming Torpedo" Storyline
 - Torpedo detected (percept)
 - Estimate Bearing and Distance (goal)
 - Deploy Countermeasures (goal)
 - Evade Torpedo (goal)

- Assign roles to characters and teams
- Tactics Design Patterns
 - * objective (Escape Torpedo)
 - trigger (Incoming Torpedo Detected)
 - problem and solution descriptions
 - context (No Countermeasures Remaining)
 - * goal structures
 - * plan diagrams
 - * outcomes, restrictions, information updated, source

- Generates JACK and GORITE code stubs
- * TDF code is demarcated
- Any changes outside the demarcated areas are preserved

Evaluation of TDF

- * USW analysts have applied to their tactical simulations
 - * High-level tactics view facilitates design
 - * Helps predict how the characters will behave at runtime
 - * Tens of thousands of Monte Carlo runs
 - * Facilitates reuse and building of tactics libraries
- * TDF vs. UML
 - * UAV photoreconnaissance scenario
 - * TDF 82.4% vs. 66.4% for UML (p < 0.025)

Benefits of TDF

- * Supports the whole model development life cycle
- Will facilitate requirements and knowledge elicitation
 - Subject Matter Expert can critique models
- Diagrammatic specification of tactics
- * Promotes reuse of tactics across implementation platforms
- Traceability from requirements through to implementation

Future Developments

- Design of team structures
- Formal verification of designs
- * Extensions to TDF tool
- Code generation for other implementation languages
- * Integration with major simulation platforms, e.g. VBS3

with support from

